ANN

Copper-Catalyzed Hydroamination of Alkynes with Aliphatic Amines: Regioselective Access to (1E,3E)‑1,4-Disubstituted-1,3-dienes

Janet Bahri,^{†,‡} Bassem Jamoussi,[‡] Arie van Der Lee,[§] Marc Taillefer,^{*,†} and Florian Monnier^{*,†}

†Ecole Nationale Supérieure de Chimie de Montpellier, Institut Charles Gerhardt, C[NR](#page-2-0)S UMR 5253, AM2N, 8 rue [de](#page-2-0) l'Ecole Normale, 34296 Montpellier Cedex 05, France

‡Laboratoire de Chimie, Institut Supérieur d'Education et de Formation Continue, 43 Rue de la Liberté, 2019, Le Bardo, Tunisie [§]IEM Université Montpellier, 2 Case courrier 047 Place Eugène Bataillon, 34095 Montpellier cedex 5, France

S Supporting Information

[AB](#page-2-0)STRACT: [Copper-cataly](#page-2-0)zed hydroamination of aromatic or heteroaromatic alkynes with cyclic secondary aliphatic amines undergoes generation of an enamine-type intermediate. The latter is transformed in situ via a coupling reaction with a second molecule of alkyne to afford regioselectively (1E,3E)- 1,4-disubstituted-1,3-dienes with the formation of C−N, C−C, and C−H bonds.

The development of clean syntheses with respect to atom economy by the selective combination of several molecules into only one product is receiving increasing interest.¹ Molecular catalysts are currently playing a key role in such innovative synthetic methods.² Transition metal catalyst[s](#page-2-0) allow the synthesis of complex targeted molecules through highly simplified routes involvin[g](#page-2-0) the combination of simple and readily available substrates and the formation of several consecutive bonds with high selectivity. Alkyne and amine molecules emerged as attractive substrates because the addition of N-nucleophiles (N−H) to triple C−C bonds affords a high-valued molecule via a hydroamination-type reaction with the formation of C−N and C−H bonds.³ This type of reaction is a major goal for chemists to obtain functionalized unsaturated amines via a 100% atom-econ[o](#page-2-0)mical pathway.⁴ Recently, hydroamination mediated by acids, bases, alkaline earth metals, lanthanides, and actinides has been perform[ed](#page-2-0).⁵ Transition-metal-catalyzed hydroamination of alkynes has also been developed in recent years, 6 notably with Ag, [Au](#page-2-0), Pt, Pd, Rh, Ir, and Ru catalysts. Unlike these expensive metal sources, cheaper and more sustaina[bl](#page-2-0)e metals such as copper have received limited attention.⁷ Thus, most of the Cu-catalyzed hydroamination reactions have been described in an intramolecular fashion to afford N-heter[oc](#page-3-0)ycles.⁸ Only a few reports have been developed for intermolecular reactions. Most of them make use of heterogeneous copper-s[up](#page-3-0)ported catalysts and are limited to the formation of imines from primary amines.⁹ Only one example of a simple hydroamination of terminal alkynes with anilines affording the corresponding imines has bee[n](#page-3-0) described (with CuCl used in homogeneous conditions).7d The principal limitation of these copper catalysts is the exclusive use of primary amines as substrates. Thus, there is a need t[o d](#page-3-0)iscover a novel and simple system to extend the copper-catalyzed hydroamination of alkynes to secondary amines to produce enamines and dieneamines.

As part of our studies on copper-catalyzed cross-coupling reactions,¹⁰ herein we report a one-pot regioselective access to (1E,3E)-1,4-disubstitued-1,3-dienes via a sequential formation of C−N, [C](#page-3-0)−H and C−C bonds relative to a hydroaminationtype intermediate. The synthesis of this original class of complex molecules is catalyzed by a simple copper salt (CuCl) without any additive ligands, and is made from the reaction of 2 equiv of terminal arylacetylenes with cyclic secondary aliphatic amines. It is noteworthy that dienamine chemistry is a valuable tool in organic chemistry, especially in bioactive molecules, natural products, and organocatalysis.¹¹

Initial tests were done on phenylacetylene (2 mmol) and morpholine (5 mmol) as model su[bst](#page-3-0)rates with a ligandless copper catalyst (2.5 mol % of $Cu(0)$, $Cu(I)$, or $Cu(II)$ catalysts) in NMP to observe the reactivity of this system (Table 1). First, we observed a mixture of classical hydroamination products such as enamine coming from the Markov[ni](#page-1-0)kov and anti-Markovnikov addition of morpholine, respectively 2a and 3a (only observed by GC-MS due to a rapid degradation), and a degradation product 4a coming from hydrolysis of 3a (Table 1, entries 1−8). In all cases, molecules 2a, 3a, and 4a were unselectively observed in low to fair yields. Surprisingly, whatever t[he](#page-1-0) copper source, we also observed an unexpected product 1a in moderate to large amounts. After purification and isolation of the latter, we identified 1a as 4- $((1E,3E)-1,4$ -diphenylbuta-1,3-dien-1-yl)morpholine. We rapidly thought that the formation of this compound was synthetically interesting as, to the best of our knowledge, there is no precedent in the literature of this kind of highvalued molecule synthesis.¹¹

Following this initial success, we decided to focus on the optimization of the reactio[n](#page-3-0) conditions to afford 1a in the most

Received: January 19, 2015 Published: February 23, 2015

Table 1. Hydroamination of Phenylacetylene: Parametric Study^{a,b}

a Conditions: phenylacetylene (2 mmol), morpholine (5 mmol), CuCl (0.05 mmol) , 2 mL of solvent, 12 h of reaction. b GC Yields with 1,3,5trimethoxybenzene as internal standard.

selective manner. As resumed in Table 1, we found that CuCl was the most efficient copper source (Table 1, entries 1−8) associated with the NMP as solvent (Table 1, entries 8−15) for the generation of 1a in 75% NMR yield (entry 8). We also showed that thermal activation at 120 °C is needed for the synthesis of 1a as neither rt nor 90 °C allow good formation of the desired product. Activation by microwaves is also unsuitable for this transformation (Table 1, entry 19). It is noteworthy that none of the products 1a−4a were observed in the absence of any copper sources (entry 20). We also observed an important decrease in yields and selectivities if we add <2.5 equiv of morpholine or <2.5 mol % of CuCl. At this stage of the investigation, we were able to selectively isolate 75% of 1a starting from 1 mmol of phenylacetylene (with a second addition after 2 h of reaction at 120 $^{\circ}$ C) and 2.5 mmol of morpholine catalyzed by 2.5 mol % of CuCl in NMP at 120 °C over 12 h.¹²

On the basis of these results, we wished to demonstrate further th[e](#page-3-0) efficiency and functional group tolerance of this novel reaction by varying substitution on aryl acetylenes and amines. First, we were able to apply our method to various cyclic secondary amines (Scheme 1).¹³ Phenylacetylene easily reacted under optimized conditions with morpholine, thiomorpholine, piperidine, and 4-methy[lpi](#page-3-0)perazine to afford the

Scheme 1. Reaction Scope with Various Six-Membered Ring Amines (Isolated Yields)

corresponding target dienes 1a, 1b, 1c, and 1d respectively in 72%, 70%, 67%, and 70% isolated yields.

Furthermore, we could isolate crystals of 1c that were suitable for X-ray structure analysis (CCDC 1029186) (Figure 1). The structure revealed the relative spatial position of the

Figure 1. ORTEP drawing of the molecular structure of 1c (nitrogen atom in blue).

piperidine substituent on the first double bond. The structure also reveals the stereochemistry of both double bonds (e.g., 1E,3E) and the trans junction between them. All these observations were correlated by NMR experiments and the different coupling constants observed in all the ¹H NMR spectra of 1,4-disubstituted-1,3-dienes 1a−1t.

We also demonstrated that this original method is tolerant of cyclic amines of various sizes and different substitutions. Thus, under classical conditions, it was shown that the reaction proceeds with very good selectivities starting from pyrrolidine, piperidine, and azepane, the corresponding products 1e, 1c, and 1f being obtained respectively in 63%, 67%, and 60% yields (Scheme 2).

Scheme 2. Scope of the Reaction with Differents Sizes of Cyclic Amines (Isolated Yields)

We also noted that substitutions on the piperidine partner did not affect the reactivity, as we isolated the corresponding dienes 1g and 1h in 64% and 62% yields (Scheme 3).

Then, we decided to investigate the scope of this hydroamination process by evaluating a series [o](#page-2-0)f various electronically varied arylacetylenes under one set of optimized

conditions (Scheme 4). Moderate to good yields were obtained with terminal alkynes substituted on the aryl ring by methyl,

tert-butyl, and thiomethyl groups (Scheme 4, products 1i−1k and 1t). Additionally, we also tested para-halogenated aromatic alkynes, and corresponding dienes were isolated in good yields (for $R = Br$: 65% of 1l, for $R = Cl$: 66% of 1m, and for $R = Fr$: 63% of 1n).

Finally, we showed that this methodology is tolerant and efficient if hetero- and polyaromatic alkynes are used as starting materials (Figure 2). Under optimized conditions, we were able

Figure 2. Reaction scope with various aromatic and heteroaromatic alkynes (isolated yields).

to isolate 1o, 1p, 1q, 1r, and 1s starting respectively from 2 thienyl, 3-thienyl-, 3-pyridyl-, 2-naphthyl-, and 4-biphenylacetylene in good to moderate yields. In the case of biphenylacetylene, the moderate yield of 1s could be explained by the important steric hindrance.

Although we do not have any proof of the mechanism of this transformation, we think the first step is generation via a

hydroamination reaction of an enamine-type intermediate coordinated to copper, the latter being able to activate (coordination/insertion) a second molecule of alkyne before the formation and release of the dieneamine. Further investigations on the mechanism of this reaction are in progress.

In summary, a novel type of functionalization of alkynes with cyclic secondary amines has been developed. Starting from these very accessible and simple substrates, a low catalytic amount of CuCl allows regioselective one-pot access to (1E,3E)-1,4-disubstitued-1,3-dienes. This reaction proceeds via a sequential formation of C−N and C−C bonds relative to a hydroamination-type intermediate. This original reaction allows simple and cheap access to dienamines which are valuable tools in bioactive-natural synthesis and in organocatalysis.

■ ASSOCIATED CONTENT

S Supporting Information

Detailed experimental procedures and characterization data for all new compounds, and X-ray structural data for 1c (CCDC 1029186). This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Authors

*E-mail: marc.taillefer@enscm.fr.

*E-mail: florian.monnier@enscm.fr.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Authors thank CNRS, Proclean and Région Languedoc-Roussillon for support and Martin Pichette-Drapeau (UniversitéLaval, Canada) for proofreading this manuscript.

■ REFERENCES

(1) Li, C. J.; Trost, B. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 13197.

(2) Beller, M.; Bolm, C. Transitions Metals for organic Synthesis: Building Blocks and Fine Chemicals, 2nd revised and enlarged ed.; Wiley-VCH: 2008.

(3) (a) Nishina, N.; Yamamoto, Y. Topics in Organometallic Chemistry; Springer: 2013; Vol. 43, p 115. (b) Reznichenko, A. L.; Hultzsch, K. C. Topics in Organometallic Chemistry; Springer: 2013; Vol. 43, p 51.

(4) Nobis, M.; Driesen-Hölscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983.

(5) (a) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. (b) Hannedouche, J.; Shulz, E. Chem. Eur. J. 2013, 19, 4972. (c) Schafer, L. L.; Yim, J. C. H.; Zonson, N. Metal-catalyzed Cross-coupling Reactions and More, 1st ed.; Wiley-VCH: 2014; p 1135.

(6) (a) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407−1420. (b) Lavallo, V.; Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 5224. (c) Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2011, 50, 5560. (d) Sakai, K.; Kochi, T.; Kakiuchi, F. Org. Lett. 2011, 13, 3928. (e) Patil, N. T.; Kavthe, R. D.; Shinde, V. S. Tetrahedron 2012, 68, 8709. (f) Yim, J. C. H.; Schafer, L. L. Eur. J. Org. Chem. 2014, 6825. (g) Alamsetti, S. K.; Person, A. K A.; Bäckvall, J.-E. Org. Lett. 2014, 16, 1434. (h) Su, Y.; Lu, M.; Dong, B.; Chen, H.; Shi, X. Adv. Synth. Catal. 2014, 356, 692.

Organic Letters Letters **Letters**

(7) (a) Zhou, L.; Bohle, D. S.; Jiang, H. F.; Li, C. J. Synlett 2009, 937. (b) Zheng, Q.; Hua, R. Tetrahedron Lett. 2010, 51, 4512. (c) Han, J.; Xu, B.; Hammond, G. B. Org. Lett. 2011, 13, 3450. (d) Robbins, D. W.; Hartwig, J. H. Science 2011, 333, 1423. (e) Gupta, S.; Agarwal, P. K.; Saifuddin, S.; Kundu, B. Tetrahedron Lett. 2011, 52, 5752. (f) Verma, A. K.; Jha, R. R.; Chaudary, I.; Tiwari, R. K.; Reddy, K. S. K.; Danodia, A. J. Org. Chem. 2012, 77, 8191.

(8) (a) Müller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A. K.; Walter, E.; Yan, Y. K. Organometallics 2000, 19, 170. (b) Krasnova, L. B.; Hein, J. E.; Fokin, V. V. J. Org. Chem. 2010, 75, 8662. (c) Tokimizu, Y.; Ohta, Y.; Chiba, H.; Oishi, S.; Fuji, N.; Ohno, H. Tetrahedron 2011, 67, 5168. (d) Chen, D. S.; Zhang, M. M.; Li, Y. L.; Liu, Y.; Wang, X. S. Tetrahedron 2014, 70, 2889. (e) Pouy, M. J.; Delp, S. A.; Uddin, J.; Ramdeen, V. M.; Cochrane, N. A.; Fortman, G. C.; Gunnoe, T. B.; Cundari, T. R.; Sabat, M.; Myers, W. H. ACS Catal. 2012, 2, 2182.

(9) (a) Joseph, T.; Shanbhag, G. V.; Halligudi, S. B. J. Mol. Catal. A.: Chem. 2005, 236, 139. (b) Shanbhag, G. V.; Kumber, S. M.; Joseph, T.; Halligudi, S. B. Tetrahedron Lett. 2006, 47, 141. (c) Shanbhag, G. V.; Joseph, T.; Halligudi, S. B. J. Catal. 2007, 250, 274. (d) Shanbhag, G. V.; Palraj, K.; Halligudi, S. B. Open Org. Chem. J. 2008, 2, 52. (e) Pandhare, S. L.; Kotbagi, T. V.; Dongare, M. K.; Umbarkar, S. B. Current Catal. 2013, 2, 62.

(10) (a) Cristau, H. J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Chem.Eur. J. 2004, 10, 5607. (b) Taillefer, M.; Xia, N.; Ouali, A. Angew. Chem., Int. Ed. 2007, 46, 934. (c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954. (d) Tlili, A.; Monnier, F.; Taillefer, M. Chem.-Eur. J. 2010, 16, 12299. (e) Racine, E.; Monnier, F.; Vors, J.-P.; Taillefer, M. Org. Lett. 2011, 13, 2818. (f) Tlili, A.; Monnier, F.; Taillefer, M. Chem. Commun. 2012, 48, 6408. (g) Danoun, G.; Tlili, A.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2012, 51, 12815. (h) Racine, E.; Monnier, F.; Vors, J.-P.; Taillefer, M. Chem. Commun. 2013, 49, 7412. (i) Lefèvre, G.; Tlili, A.; Taillefer, M.; Adamo, C.; Ciofini, I.; Jutand, A. Dalton Trans. 2013, 42, 5348.

(11) Ramachary, D. B.; Reddy, Y. V. Eur. J. Org. Chem. 2012, 865. (12) Refer to the experimental details in the Supporting Information for a precise protocol.

(13) Under optimized conditions (entry 8, Table 1), reactions using secondary acylic amines with phenylacetylene do not aff[ord the desired](#page-2-0) dieneamine.